已知点(1,
(1)求数列{an}和{bn}的通项公式; (2)若数列{
|
(1)由已知f(1)=a=
,∴f(x)=(1 3
)x,等比数列{an}的前n项和为f(n)-c=(1 3
)-nc,1 3
∴a1=f(1)=
-c,a2=[f(2)-c]-[f(1)-c]=-1 3
,a3=[f(3)-c]-[f(2)-c]=-2 9 2 27
数列{an}是等比数列,应有
=a2 a1
=q,解得c=1,q=a3 a2
.1 3
∴首项a1=f(1)=
-c=-1 3 2 3
∴等比数列{an}的通项公式为an=(-
) (2 3
)n-1=-2(1 3
)n.1 3
(2)∵Sn-Sn-1=(
- Sn
)(Sn-1
+Sn
)=Sn-1
+Sn
(n≥2)Sn-1
又bn>0,
>0,∴Sn
-Sn
=1;Sn-1
∴数列{
}构成一个首项为1,公差为1的等差数列,Sn
∴
=1+(n-1)×1=n Sn
∴Sn=n2
当n=1时,b1=S1=1,
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1
又n=1时也适合上式,
∴{bn}的通项公式bn=2n-1.
(2)
=1 bnbn+1
=1 (2n-1)×(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=
[(1-1 2
)+(1 3
-1 3
)+(1 5
-1 5
)+…+(1 7
-1 2n-1
)]1 2n+1
=
(1-1 2
)=1 2n+1 n 2n+1
由Tn>
,得1000 2009
>n 2n+1
,n>1000 2009
,1000 9
故满足Tn>
的最小正整数为112.1000 2009