问题
解答题
已知等差数列{an}的首项a1=3,公差d≠0,其前n项和为Sn,且a1,a4,a13成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)证明:
|
答案
由a1,a4,a13成等比数列,得a42=a1a13,
即(a1+3d)2=a1(a1+12d),所以a12+6a1d+9d2=a12+12a1d.
9d2=6a1d,a1=
d.则d=3 2
a1=2 3
×3=2.2 3
(Ⅰ)an=a1+(n-1)d=3+2(n-1)=2n+1;
(Ⅱ)Sn=na1+
=3n+n2-n=n(n+2).n(n-1)d 2
则
=1 Sn
=1 n(n+2)
(1 2
-1 n
),1 n+2
所以
+1 S1
+…1 S2
=1 Sn
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n-1
+1 n+1
-1 n
)1 n+2
=
(1+1 2
-1 2
-1 n+1
)=1 n+2
-3 4
-1 2(n+1)
<1 2(n+2)
.3 4