问题
填空题
在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为______.
答案
在等差数列{an}中,由a1=120,d=-4,
得:an=a1+(n-1)d=120-4(n-1)=124-4n,
Sn=na1+
=120n+n(n-1)d 2
=122n-2n2-4n(n-1) 2
由Sn≤an,得:122n-2n2≤124-4n.
即n2-63n+62≥0.解得:n≤1或n≥62.
因为n≥2,所以n≥62.
所以n的最小值为62.
故答案为62.