问题
解答题
设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1,数列{bn}满足a1=b1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)设cn=
|
答案
(Ⅰ)由an+1=2Sn+1可得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2an,
an+1=3an(n≥2).
又a2=2S1+1=3,
所以a2=3a1.
故{an}是首项为1,公比为3的等比数列.
所以an=3n-1.
由点P(bn,bn+1)在直线x-y+2=0上,所以bn+1-bn=2.
则数列{bn}是首项为1,公差为2的等差数列.
则bn=1+(n-1)•2=2n-1
(Ⅱ)因为cn=
=bn an
,所以Tn=2n-1 3n-1
+1 30
+3 31
++5 32
.2n-1 3n-1
则
Tn=1 3
+1 31
+3 32
++5 32
+2n-3 3n-1
,2n-1 3n
两式相减得:
Tn=1+2 3
+2 3
++2 32
-2 3n-1
.2n-1 3n
所以Tn=3-
-1 2•3n-2
=3-2n-1 2•3n-1
.n+1 3n-1