问题 问答题

设a≠0为常数,f(x)在(-∞,+∞)连续,考察一阶线性常系数方程
y’+ay=f(x) (x∈(-∞,+∞)). (*)
(Ⅰ) 求通解的表达式;
(Ⅱ) 设a>0,又f(x)有界且

收敛,求证:方程(*)只有一个解在(-∞,+∞)有界;
(Ⅲ) 若又有f(x)以T为周期,求证:方程(*)只有一个解是以T为周期的.

答案

参考答案:[分析与求解] (Ⅰ) 将方程两边乘以[*]得
(yeax)’=eaxf(x).
积分得 yeax=∫eaxf(x)dx+C.
于是得通解
[*]
或[*]
其中C为[*]常数.通解即所有解.
(Ⅱ) 由通解表达式知
[*]
若[*],则[*],于是y(x)在(-∞,+∞)无界.
若[*],即[*],则相应的
[*]
即y(x)在(-∞,+∞)有界.
因此,(*)只有一个有界解(x∈(-∞,+∞)).
(Ⅲ) 若y(x)是(*)的以T为周期的解 [*]y(x)必是有界的[*]
[*]
以下只须再证:y(X)以T为周期.由
[*]
[*]y(X)以T为周期.
因此,(*)只有一个解是以T为周期的.

完形填空
完形填空。
—__1__ my coat, Mum? Do you know?
―__2__ in the box?
—Let me __3__. Oh, __4__ . But it's__5__ old one. Where's my new one?
—I__6__ know. __7__ this green one?
—Isn't it a small __8__?
—I think __9__ all right.
—Oh, yes, __10__ . Mum.
( ) 1. A. Which is    
( ) 2. A. Is there    
( ) 3. A. have a look  
( ) 4. A. here you are
( ) 5. A. a            
( ) 6. A. not          
( ) 7. A. Whose is    
( ) 8. A. one          
( ) 9. A. its          
( ) 10. A. Thank       
                                               
B. What is      
B. There is    
B. looking      
B. here it is  
B. an          
B. am not      
B. What is      
B. ones        
B. it's        
B. Thanks       
               
C. Who is            
C. Is it            
C. to look at        
C. that's all right  
C. some              
C. don't            
C. Is                
C. it                
C. she's            
C. Thanks you        
                                       
D. Where is    
D. It is        
D. look at      
D. OK          
D. the          
D. am not to    
D. That is      
D. that        
D. you're      
D. All right    
                                   
单项选择题