问题 解答题
设Sn是数列{an}的前n项和,所有项an>0,且Sn=
1
4
an2+
1
2
an-
3
4

(Ⅰ)求数列{an}的通项公式.
(Ⅱ)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
答案

(Ⅰ)n=1时,a1=s1=

1
4
a21
+
1
2
a1-
3
4
,解出a1=3

又4sn=an2+2an-1-3①

4sn-1=an-12+2an-3(n≥2)②

①-②4an=an2-an-12+2an-2an-1

∴(an+an-1)(an-an-1-2)=0

∵an+an-1>0

∴an-an-1=2(n≥2)

∴数列{an}是以3为首项,2为公差之等差数列

∴an=3+2(n-1)=2n+1

(Ⅱ)Tn=3×21+5×22++(2n+1)•2n+0③

又2Tn=0+3×22++(2n-1)•2n+(2n+1)2n+1

④-③Tn=-3×21-2(22+23++2n)+(2n+1)2n+1=(2n-1)2n+1+2

∴Tn=(2n-1)•2n+1+2

不定项选择
问答题 简答题