问题
解答题
设Sn是数列{an}的前n项和,所有项an>0,且Sn=
(Ⅰ)求数列{an}的通项公式. (Ⅱ)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值. |
答案
(Ⅰ)n=1时,a1=s1=1 4
+a 21
a1-1 2
,解出a1=33 4
又4sn=an2+2an-1-3①
4sn-1=an-12+2an-3(n≥2)②
①-②4an=an2-an-12+2an-2an-1
∴(an+an-1)(an-an-1-2)=0
∵an+an-1>0
∴an-an-1=2(n≥2)
∴数列{an}是以3为首项,2为公差之等差数列
∴an=3+2(n-1)=2n+1
(Ⅱ)Tn=3×21+5×22++(2n+1)•2n+0③
又2Tn=0+3×22++(2n-1)•2n+(2n+1)2n+1④
④-③Tn=-3×21-2(22+23++2n)+(2n+1)2n+1=(2n-1)2n+1+2
∴Tn=(2n-1)•2n+1+2