问题
解答题
设{an}为等差数列,Sn是等差数列的前n项和,已知a2+a6=2,S15=75. (1)求数列的通项公式an; (2)Tn为数列{
|
答案
(1)∵a2+a6=2,S15=75
∴2a1+6d=2 15a1+
=7515×14d 2
解方程可得,d=1,a1=-2
∴an=-2+n-1=n-3
(2)由(1)可得,sn=-2n+
=n(n-1) 2 n2-5n 2
∴
=sn n n-5 2
∴Tn=(1-5)+(2-5)+(3-5)+…+(n-5) 2
=
-5n(1+n)n 2 2
=n2-9n 4