问题
解答题
已知等差数列{an}中,a1•a5=33,a2+a4=14,Sn为数列{an}的前n项和. (1)求数列{an}的通项公式; (2)若数列{an}的公差为正数,数列{bn}满足bn=
|
答案
(1)设{an}的公差为d,则a1(a1+4d)=33 2a1+4d=14
解得
或a1=3 d=2 a1=11 d=-2
因此an=3+2(n-1)=2n+1或an=11-2(n-1)=-2n+13 ….(6分)
(2)当公差为正数时,d=2,Sn=3n+n(n-1)=n2+2n
∵bn=
=1 Sn
=1 n(n+2)
(1 2
-1 n
)1 n+2
∴Tn=
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n-2
+1 n
-1 n-1
+1 n+1
-1 n
)1 n+2
=
(1+1 2
-1 2
-1 n+1
)=1 n+2
….(12分)n(3n+5) 4(n+1)(n+2)