问题
解答题
等差数列{an}满足:a1+a3+…+a11=126,且a1-a12=-33. (1)求数列{an}的通项公式; (2)数列{bn}满足:bn=
|
答案
(1)a1+a3+…+a11=a1+a11+a3+a9+a5+a7=6a6=126,则a6=21,
a1-a12=-11d=-33,则d=3,
则a1=a6-5d=21-15=6
则an=a1+(n-1)d=6+3(n-1)=3n+3,
(2)设数列{bn}的前100项和S100,
由(1)可得,an=3n+3,则an+1=3n+6,
bn=
=3 (3n+3)(3n+6) 1 3
=1 n(n+1)
(1 3
-1 n+1
)1 n+2
则S100=b1+b2+b3+b4+…+b100=
[(1 3
-1 2
)+…+(1 3
-1 100
)+(1 101
-1 101
)]=1 102
.25 153