问题
解答题
已知各项均不相等的等差数列{an}的前三项和S3=9,且a5是a3和a8的等比中项. (1)求数列{an}的通项公式; (2)设Tn为数列{
|
答案
(1)设数列{an}的公差为d,则
∵S3=9,且a5是a3和a8的等比中项,
∴3a1+3d=9 (a1+4d)2=(a1+2d)(a1+7d)
∵d≠0,∴d=1
∴a1=2
∴an=n+1;
(2)证明:∵
=1 anan+1
=1 (n+1)(n+2)
-1 n+1 1 n+2
∴Tn=
-1 2
+1 3
-1 3
+…+1 4
-1 n+1
=1 n+2
-1 2
=1 n+2 n 2(n+2)
∵Tn≤λan+1对任意的n∈N*恒成立,
∴
≤λ(n+2)对任意的n∈N*恒成立,n 2(n+2)
∵
=n 2(n+2)2
≤1 2(n+
+4)4 n
=1 2×(4+4) 1 16
∴λ≥
.1 16