问题 解答题
设数列{an}的前n项和为Sn,已知a1=a2=1,bn=nSn+(n+2)an,数列{bn}是公差为d的等差数列,n∈N*
(1)求d的值;
(2)求数列{an}的通项公式;
(3)求证:(a1a2an)•(S1S2Sn)<
22n+1
(n+1)(n+2)
答案

(1)∵a1=a2=1,bn=nSn+(n+2)an

∴b1=S1+3a1,b2=2S2+4a2

∴d=b2-b1=4

(2)∵数列{bn}是公差为4的等差数列,b1=4

∴bn=4n

∵bn=nSn+(n+2)an

∴4n=nSn+(n+2)an

Sn+

n+2
n
an=4①

当n≥2时,Sn-1+

n+1
n-1
an-1=4②

①-②:Sn-Sn-1+

n+2
n
an-
n+1
n-1
an-1=0

an+

n+2
n
an-
n+1
n-1
an-1=0

an
an-1
=
1
2
n
n-1

an
a1
=
an
an-1
× 
an-1
an-2
×…
a2
a1
=
1
2n-1
•n

∵a1=1,∴an=

n
2n-1

(3)∵Sn+

n+2
n
an=4,an>0,Sn>0

Sn×
n+2
n
an
Sn+
n+2
n
an
2
=2

0<anSn≤4•

n
n+2

(a1a2an)•(S1S2Sn)≤

22n+1
(n+1)(n+2)

∵n=1,Sn

n+2
n
an

∴等号不成立

(a1a2an)•(S1S2Sn)<

22n+1
(n+1)(n+2)

单项选择题
多项选择题