问题
解答题
设数列{an}的前n项和为Sn,已知a1=a2=1,bn=nSn+(n+2)an,数列{bn}是公差为d的等差数列,n∈N*. (1)求d的值; (2)求数列{an}的通项公式; (3)求证:(a1a2…an)•(S1S2…Sn)<
|
答案
(1)∵a1=a2=1,bn=nSn+(n+2)an,
∴b1=S1+3a1,b2=2S2+4a2,
∴d=b2-b1=4
(2)∵数列{bn}是公差为4的等差数列,b1=4
∴bn=4n
∵bn=nSn+(n+2)an,
∴4n=nSn+(n+2)an,
∴Sn+
an=4①n+2 n
当n≥2时,Sn-1+
an-1=4②n+1 n-1
①-②:Sn-Sn-1+
an-n+2 n
an-1=0n+1 n-1
∴an+
an-n+2 n
an-1=0n+1 n-1
∴
=an an-1
•1 2 n n-1
∴
=an a1
× an an-1
×…an-1 an-2
=a2 a1
•n1 2n-1
∵a1=1,∴an=n 2n-1
(3)∵Sn+
an=4,an>0,Sn>0n+2 n
∴
≤Sn×
ann+2 n
=2Sn+
ann+2 n 2
∴0<anSn≤4•n n+2
∴(a1a2…an)•(S1S2…Sn)≤
③22n+1 (n+1)(n+2)
∵n=1,Sn≠
ann+2 n
∴等号不成立
∴(a1a2…an)•(S1S2…Sn)<22n+1 (n+1)(n+2)