问题
解答题
已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn.
答案
当n=1时,a1=S1=12-12=11;
当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n.
∵n=1时适合上式,
∴{an}的通项公式为an=13-2n.
由an=13-2n≥0,得n≤
,13 2
即当 1≤n≤6(n∈N*)时,an>0;当n≥7时,an<0.
(1)当 1≤n≤6(n∈N*)时,
Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=12n-n2.
(2)当n≥7(n∈N*)时,
Tn=|a1|+|a2|+…+|an|=(a1+a2+…+a6)-(a7+a8+…+an)=-(a1+a2+…+an)+2(a1+…+a6)
=-Sn+2S6=n2-12n+72.
∴Tn=12n-n2 n2-12n+72
.(1≤n≤6,n∈,*), (n≥7,n∈,*).