问题
解答题
已知f(x)=(x-1)2,数列{an}是首项为a1,公差为d的等差数列;{bn}是首项为b1,公比为q(q∈R且q≠1)的等比数列,且满足a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1). (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)若存在cn=an•bn(n∈N*),试求数列{cn}的前n项和; (Ⅲ)是否存在数列{dn},使得d1=a2,dn=
|
答案
(Ⅰ)由题意可得,a3-a1=d2-(d-2)2=2d
∴d=2
由等差数列的通项公式可得,an=2n-2(n∈N*);
∵b3=(q-2)2=q2•q2
∴q2±q∓2=0∴q=-2
∴bn=(-2)n+1(n∈N*).
(Ⅱ)由(I)可得,Cn=an•bn=2(n-1)•(-2)n+1
∴Sn=2×0×(-2)2+2×1×(-2)3+2(n-1)×(-2)n+1
-2Sn=2×0×(-2)3+2×1×(-2)4+…+(2(n-1)•(-2)n+2
错位相减法,可得3Sn=
[(-2)3-(-2)n+2]-(2n-2)•(-2)n+2⇒Sn=2 3 (4-6n)•(-2)n+2-16 9
(Ⅲ)假设存在满足条件的数列{dn},则有d1=a2=2,且有dn=
-2dn-1(-2)n+1 4
dn=(-2)n-1-2dn-1,两边同除以(-2)n-1可得
=1--2dn (-2)n 2dn-1 (-2)n-1
令
=An,则有-2An=1-2An-1⇒An-An-1=-dn (-2)n 1 2
故{An}是首项为-1,公差为-
的等差数列,则An=-1+(n-1)(-1 2
)=-1 2
(n+1),1 2
故dn=(n+1)(-2)n-1.