问题 解答题
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(1)若数列{
an
2n
}
为等差数列,求实数λ的值;
(2)求数列{an}的前n项和Sn
答案

(1)方法1:∵a1=5,

a2=2a1+22-1=13a3=2a2+23-1=33

bn=

an
2n
,由{bn}为等差数列,则有2b2=b1+b3

a2
22
=
a1
2
+
a3
23

13+λ
2
=
5+λ
2
+
33+λ
8

解得 λ=-1.

事实上,bn+1-bn=

an+1-1
2n+1
-
an-1
2n
=
1
2n+1
[(an+1-2an)+1]
=
1
2n+1
[(2n+1-1)+1]
=1,

综上可知,当λ=-1时,数列{

an
2n
}为首项是2、公差是1的等差数列.

方法2:∵数列{

an
2n
}为等差数列,

bn=

an
2n
,由{bn}为等差数列,则有2bn+1=bn+bn+2(n∈N*).

an+1
2n+1
=
an
2n
+
an+2
2n+2

∴λ=4an+1-4an-an+2=2(an+1-2an)-(an+2-2an+1)=2(2n+1-1)-(2n+2-1)=-1.

综上可知,当λ=-1时,数列{

an
2n
}为首项是2、公差是1的等差数列.

(2)由(1)知,

an-1
2n
=
a1-1
2
+(n-1)×1,

an=(n+1)•2n+1

Sn=(2•21+1)+(3•22+1)+…+(n•2n-1+1)+[(n+1)•2n+1]

Sn=2•21+3•22+…+n•2n-1+(n+1)•2n+n

Tn=2•21+3•22+…+n•2n-1+(n+1)•2n,①

2Tn=2•22+3•23+…+n•2n+(n+1)•2n+1.         ②

②-①,得Tn=-2•21-(22+23+…+2n)+(n+1)•2n+1=n•2n+1

Sn=n•2n+1+n=n•(2n+1+1)

单项选择题
单项选择题