已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*). (1)若数列{
(2)求数列{an}的前n项和Sn. |
(1)方法1:∵a1=5,
∴a2=2a1+22-1=13,a3=2a2+23-1=33.
设bn=
,由{bn}为等差数列,则有2b2=b1+b3.an+λ 2n
∴2×
=a2+λ 22
+a1+λ 2
.a3+λ 23
∴
=13+λ 2
+5+λ 2
.33+λ 8
解得 λ=-1.
事实上,bn+1-bn=
-an+1-1 2n+1
=an-1 2n
[(an+1-2an)+1]=1 2n+1
[(2n+1-1)+1]=1,1 2n+1
综上可知,当λ=-1时,数列{
}为首项是2、公差是1的等差数列.an+λ 2n
方法2:∵数列{
}为等差数列,an+λ 2n
设bn=
,由{bn}为等差数列,则有2bn+1=bn+bn+2(n∈N*).an+λ 2n
∴2×
=an+1+λ 2n+1
+an+λ 2n
.an+2+λ 2n+2
∴λ=4an+1-4an-an+2=2(an+1-2an)-(an+2-2an+1)=2(2n+1-1)-(2n+2-1)=-1.
综上可知,当λ=-1时,数列{
}为首项是2、公差是1的等差数列.an+λ 2n
(2)由(1)知,
=an-1 2n
+(n-1)×1,a1-1 2
∴an=(n+1)•2n+1.
∴Sn=(2•21+1)+(3•22+1)+…+(n•2n-1+1)+[(n+1)•2n+1].
即Sn=2•21+3•22+…+n•2n-1+(n+1)•2n+n.
令Tn=2•21+3•22+…+n•2n-1+(n+1)•2n,①
则2Tn=2•22+3•23+…+n•2n+(n+1)•2n+1. ②
②-①,得Tn=-2•21-(22+23+…+2n)+(n+1)•2n+1=n•2n+1.
∴Sn=n•2n+1+n=n•(2n+1+1).