问题 解答题
{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1a4=27,S4=24.
(1)求数列{an}的通项公式an
(2)令bn=
1
anan+1
,求数列{bn}的前n项和Tn
答案

(1)S4=

4(a1+a4)
2
=24,∴a1+a4=12

又a1a4=27,d>0,∴a1=3,a4=9,

∴9=3+3d,解得d=2,

∴an=2n+1.

(2)bn=

1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
),

Tn=

1
2
[(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n+1
-
1
2n+3
)]=
1
2
(
1
3
-
1
2n+3
)

=

n
6n+9

单项选择题
单项选择题