问题
解答题
{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1a4=27,S4=24. (1)求数列{an}的通项公式an; (2)令bn=
|
答案
(1)S4=
=24,∴a1+a4=124(a1+a4) 2
又a1a4=27,d>0,∴a1=3,a4=9,
∴9=3+3d,解得d=2,
∴an=2n+1.
(2)bn=
=1 anan+1
=1 (2n+1)(2n+3)
(1 2
-1 2n+1
),1 2n+3
Tn=
[(1 2
-1 3
)+(1 5
-1 5
)+…+(1 7
-1 2n+1
)]=1 2n+3
(1 2
-1 3
)1 2n+3
=
.n 6n+9