问题
解答题
已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
(1)证明数列{bn}是等差数列并求数列{bn}的通项公式; (2)求数列{an}的前n项和Sn. |
答案
解(1)证明:由bn=
,得bn+1=an 3n
,an+1 3n+1
∴bn+1-bn=
-an+1 3n+1
=an 3n
---------------------(2分)1 3
所以数列{bn}是等差数列,首项b1=1,公差为
-----------(4分)1 3
∴bn=1+
(n-1)=1 3
------------------------(6分)n+2 3
(2)an=3nbn=(n+2)×3n-1-------------------------(7分)
∴Sn=a1+a2+…+an=3×1+4×3+…+(n+2)×3n-1----①
∴3Sn=3×3+4×32+…+(n+2)×3n-------------------②(9分)
①-②得-2Sn=3×1+3+32+…+3n-1-(n+2)×3n
=2+1+3+32+…+3n-1-(n+2)×3n=
-(n+2)×3n------(11分)3n+3 2
∴Sn=-
+3n+3 4
-----------------(12分)(n+2)3n 2