问题
解答题
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=
(Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn. |
答案
(Ⅰ)∵a3,a5是方程x2-14x+45=0的两根,且数列{an}的公差d>0,
∴a3=5,a5=9,公差d=
=2.a5-a3 5-3
∴an=a5+(n-5)d=2n-1.(3分)
又当n=1时,有b1=S1=1-b1 2
∴b1=1 3
当n≥2时,有bn=Sn-Sn-1=
(bn-1-bn),∴1 2
=bn bn-1
(n≥2).1 3
∴数列{bn}是首项b1=
,公比q=1 3
等比数列,1 3
∴bn=b1qn-1=
.(6分)1 3n
(Ⅱ)由(Ⅰ)知cn=anbn=
,则Tn=2n-1 3n
+1 31
+3 32
++5 33
(1)2n-1 3n
∴
Tn=1 3
+1 32
+3 33
++5 34
+2n-3 3n
(2)(10分)2n-1 3n+1
(1)-(2)得:
Tn=2 3
+1 3
+2 32
++2 33
-2 3n
=2n-1 3n+1
+2(1 3
+1 32
++1 33
)-1 3n 2n-1 3n+1
化简得:Tn=1-
(12分)n+1 3n