问题
解答题
等差数列{an}中,a4=5,且a3,a6,a10成等比数列.
(1)求数列{an}的通项公式;
(2)写出数列{an}的前10项的和S10.
答案
(1)设数列{an}的公差为d,则
a3=a4-d=5-d,a6=a4+2d=5+2d,a10=a4+6d=5+6d,
由a3,a6,a10成等比数列得a62=a3 a10,
即(5+2d)2=(5-d)( 5+6d),
整理得10d2-5d=0,解得d=0,或d=
.1 2
当d=0时,a4=a1=5,an=5;
当d=
时,a4=a1+1 2
=5,3 2
a1=
,an=7 2
+(n-1)×7 2
=1 2
+3.n 2
(2)当d=0时,
S10=10•a4=50.
当d=
时,1 2
a1=a4-3d=5-
=3 2
,7 2
S10=10×
+7 2
×10×9 2
=1 2
.115 2