问题
解答题
已知函数f(x)=(x-1)2,数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足bn=(
(I)求an; (II)若数列{cn}满足cn=
|
答案
(I)因为点(an+1,S2n-1)在函数f(x)的图象上,所以an2=S2n-1,
令n=1,2得
,即
=S1a 21
=S3a 22
解得
=a1,…①a 21
=3a1+3d,…②a 22
,a1=1 d=2
∴an=2n-1;
(II)由(I)得cn=
=an 4n-1•bn
=2n-1 4n-1•(
)n-13 4
,2n-1 3n-1
令Tn=c1+c2+c3+…+cn,
则Tn=
+1 30
+3 31
+…+5 32
+2n-3 3n-2
,①2n-1 3n-1
∴
Tn=1 3
+1 31
+3 32
+…+5 33
+2n-3 3n-1
,②2n-1 3n
①-②得
Tn=2 3
+1 3
+2 32
+…+2 33
-2 3n-1
=1+2n-1 3n
×2 3
-1- 1 3n-1 1- 1 3
=2-2n-1 3n 2(n+1) 3n
∴Tn=3-
<3.n+1 3n-1