问题 解答题
已知函数f(x)=(x-1)2,数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足bn=(
3
4
)n-1

(I)求an
(II)若数列{cn}满足cn=
an
4n-1bn
,证明:c1+c2+c3+…+cn<3.
答案

(I)因为点(an+1,S2n-1)在函数f(x)的图象上,所以an2=S2n-1

令n=1,2得

a21
=S1
a22
=S3
,即
a21
=a1,…①
a22
=3a1+3d,…②
解得
a1=1
d=2

∴an=2n-1;

(II)由(I)得cn=

an
4n-1bn
=
2n-1
4n-1•(
3
4
)n-1
=
2n-1
3n-1

令Tn=c1+c2+c3+…+cn

则Tn=

1
30
+
3
31
+
5
32
+…+
2n-3
3n-2
+
2n-1
3n-1
,①

1
3
Tn=
1
31
+
3
32
+
5
33
+…+
2n-3
3n-1
+
2n-1
3n
,②

①-②得

2
3
Tn=
1
3 
+
2
32
+
2
33
+…+
2
3n-1
-
2n-1
3n
=1+
2
3
×
1-
1
3n-1
1-
1
3
-
2n-1
3n
=2-
2(n+1)
3n

∴Tn=3-

n+1
3n-1
<3.

选择题
单项选择题