问题
解答题
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=
(1)求数列{an},{bn}的通项公式; (2)记cn=an•bn,求证:cn+1<cn (3)求数列{cn}的前n项和Tn. |
答案
(1)∵等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,
∴a3=5,a5=9,∴d=
=2a5-a3 5-3
∴an=a5+2(n-5)=2n-1
∵Sn=
,∴n≥2时,bn=Sn-Sn-1=1-bn 2
,∴bn-1-bn 2
=bn bn-1 1 3
∵n=1时,b1=S1=
,∴b1=1-b1 2 1 3
∴bn=
•(1 3
)n-1=(1 3
)n;1 3
(2)证明:由(1)知cn=an•bn=2n-1 3n
∴cn+1-cn=
-2n+1 3n+1
=2n-1 3n
≤04(1-n) 3n+1
∴cn+1<cn
(3)Tn=
+1 3
+…+3 32 2n-1 3n
∴
Tn=1 3
+…+1 32
+2n-3 3n 2n-1 3n+1
两式相减可得:
Tn=2 3
+1 3
+…+2 32
-2 3n
=2n-1 3n+1
-3 2
•3 2 n+1 3n
∴Tn=1-
.n+1 3n