问题 解答题
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=
1-bn
2
(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求证:cn+1<cn
(3)求数列{cn}的前n项和Tn
答案

(1)∵等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,

∴a3=5,a5=9,∴d=

a5-a3
5-3
=2

∴an=a5+2(n-5)=2n-1

∵Sn=

1-bn
2
,∴n≥2时,bn=Sn-Sn-1=
bn-1-bn
2
,∴
bn
bn-1
=
1
3

∵n=1时,b1=S1=

1-b1
2
,∴b1=
1
3

∴bn=

1
3
(
1
3
)n-1
=(
1
3
)
n

(2)证明:由(1)知cn=an•bn=

2n-1
3n

∴cn+1-cn=

2n+1
3n+1
-
2n-1
3n
=
4(1-n)
3n+1
≤0

∴cn+1<cn

(3)Tn=

1
3
+
3
32
+…+
2n-1
3n

1
3
Tn=
1
32
+…+
2n-3
3n
+
2n-1
3n+1

两式相减可得:

2
3
Tn=
1
3
+
2
32
+…+
2
3n
-
2n-1
3n+1
=
3
2
-
3
2
n+1
3n

∴Tn=1-

n+1
3n

判断题
名词解释