问题 解答题

数列{an}中a1=3,已知点(an,an+1)在直线y=x+2上,

(1)求数列{an}的通项公式;

(2)若bn=an•3n,求数列{bn}的前n项和Tn

答案

(1)∵点(an,an+1)在直线y=x+2上.

∴数列{an}是以3为首项,以2为公差的等差数,

∴an=3+2(n-1)=2n+1

(2)∵bn=an•3n

∴bn=(2n+1)•3n∴Tn=3×3+5×32+7×33+…+(2n-1)•3n-1+(2n+1)•3n

∴3Tn=3×32+5×33+…+(2n-1)•3n+(2n+1)•3n+1

由①-②得-2Tn=3×3+2(32+33++3n)-(2n+1)•3n+1

=9+2×

9(1-3n-1)
1-3
-(2n+1)•3n+1=-2n•3n+1

∴Tn=n•3n+1

选择题
单项选择题