问题 解答题
已知数列{an}是等差数列,a3=10,a6=22,数列{bn}的前n项和是Sn,且Sn+
1
3
bn=1

(I)求数列{an}的通项公式;
(II)求证:数列{bn}是等比数列.
答案

(I)由已知,∵数列{an}是等差数列,a3=10,a6=22,

a1+2d=10
a1+5d=22.
,解得 a1=2,d=4.

∴an=2+(n-1)×4=4n-2.…(6分)

(II)证明:由于Sn=1-

1
3
bn,①

令n=1,得b1=1-

1
3
b1,解得b1=
3
4

当n≥2时,Sn-1=1-

1
3
bn-1

①-②得bn=

1
3
bn-1-
1
3
bn

bn=

1
4
bn-1

b1=

3
4
≠0,∴
bn
bn-1
=
1
4

∴数列{bn}是以

3
4
为首项,
1
4
为公比的等比数列.…(13分)

单项选择题
问答题 简答题