问题 填空题
设正项数列{an}的前n项和是Sn,若{an}和{
Sn
}都是等差数列,且公差相等,则a1+d=______.
答案

由题意知数列{an}的首项为a1,公差为d.

因为数列{an}的前n项和是Sn

所以

S1
=
a1
S2
=
2a1+d
S3
=
3a1+3d

又{

Sn
}也是公差为d的等差数列,

S2
=
2a1+d
=
a1
+d,两边平方得:2a1+d=a1+2d
a1
+d2

S3
=
3a1+3d
=
a1
+2d,两边平方得:3a1+3d=a1+4d
a1
+4d2

②-①得:a1=-2d+2d

a1
+3d2③,

把③代入①得:d(2d-1)=0.

所以d=0或d=

1
2

当d=0时,a1=0,不合题意,

当d=

1
2
时,代入③解得a1=
1
4

所以a1+d=

1
4
+
1
2
=
3
4

故答案为

3
4

判断题
问答题 简答题