问题
填空题
设正项数列{an}的前n项和是Sn,若{an}和{
|
答案
由题意知数列{an}的首项为a1,公差为d.
因为数列{an}的前n项和是Sn,
所以
=S1
,a1
=S2
,2a1+d
=S3
.3a1+3d
又{
}也是公差为d的等差数列,Sn
则
=S2
=2a1+d
+d,两边平方得:2a1+d=a1+2da1
+d2①a1
=S3
=3a1+3d
+2d,两边平方得:3a1+3d=a1+4da1
+4d2②a1
②-①得:a1=-2d+2d
+3d2③,a1
把③代入①得:d(2d-1)=0.
所以d=0或d=
.1 2
当d=0时,a1=0,不合题意,
当d=
时,代入③解得a1=1 2
.1 4
所以a1+d=
+1 4
=1 2
.3 4
故答案为
.3 4