问题
解答题
设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2). (Ⅰ)求证:数列{an}是等比数列; (Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1. |
答案
(Ⅰ)∵tSn-(t+1)Sn-1=t,(n≥2)①tSn-1-(t+1)Sn-2=t,(n≥3)②
①-②,得tan-(t+1)an-1=0.
∴
=an an-1
(n∈N*,n≥3).t+1 t
又由t(1+a2)-(t+1)=t.得a2=
.t+1 t
又∵a1=1,∴
=a2 a1
.t+1 t
所以{an}是一个首项为1,公比为
的等比数列.t+1 t
(Ⅱ)由f(t)=
,得bn=f(t+1 t
)=1+bn-1(n≥2,n∈N*).1 bn-1
∴{bn}是一个首项为1,公差为1的等差数列.
于是bn=n.
(Ⅲ)由bn=n,可知{b2n-1}和{b2n}是首项分别为1和2,公差均为2的等差数列,
于是b2n=2n.
∴b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2(b2+b4+…+b2n)
=-2•
=-2n2-2n.(2+2n)n 2