问题 解答题
设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1
bn-1
)
(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
答案

(Ⅰ)∵tSn-(t+1)Sn-1=t,(n≥2)①tSn-1-(t+1)Sn-2=t,(n≥3)②

①-②,得tan-(t+1)an-1=0.

an
an-1
=
t+1
t
(n∈N*,n≥3).

又由t(1+a2)-(t+1)=t.得a2=

t+1
t

又∵a1=1,∴

a2
a1
=
t+1
t

所以{an}是一个首项为1,公比为

t+1
t
的等比数列.

(Ⅱ)由f(t)=

t+1
t
,得bn=f(
1
bn-1
)
=1+bn-1(n≥2,n∈N*).

∴{bn}是一个首项为1,公差为1的等差数列.

于是bn=n.

(Ⅲ)由bn=n,可知{b2n-1}和{b2n}是首项分别为1和2,公差均为2的等差数列,

于是b2n=2n.

∴b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2(b2+b4+…+b2n

=-2•

(2+2n)n
2
=-2n2-2n.

选择题
选择题