问题 解答题
设数列{an} 的前n项和为Sn ,已知S1=1,
Sn+1
Sn
=
n+c
n
(c为常数,c≠1,n∈N*),且a1,a2,a3成等差数列.
(1)求c的值;
(2)求数列{an} 的通项公式;
(3)若数列{bn} 是首项为1,公比为c的等比数列,记An=a1b1+a2b2+…+anbn,Bn=a1b1-a2b2+…+(-1)n-1anbn,n∈N*.证明:A2n+3B2n=
4
3
(1-4n).
答案

(1)∵S1=1,

Sn+1
Sn
=
n+c
n

∴an+1=Sn+1-Sn=

c
n
Sn,-------------------------(2分)

∴a1=S1=1,a2=cS1=c,a3=

c
2
S2=
c
2
(1+c)

∵a1,a2,a3成等差数列,

∴2a2=a1+a3

即2c=1+

c(1+c)
2

∴c2-3c+2=0.---------------------------------------------------(5分)

解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)

(2)∵)∵S1=1,

Sn+1
Sn
=
n+2
n

∴Sn=S1×

S2
S1
×…×
Sn
Sn-1
=1×
3
1
×
4
2
×…×
n+1
n-1
=
n(1+n)
2
(n≥2),-------------------(8分)

∴an=Sn-Sn-1=

n(1+n)
2
-
n(n-1)
2
=n(n≥2),------------------------------------------(9分)

又a1=1,∴数列{an}的通项公式是an=n(n∈N*).-----------------------------------(10分)

(3)证明:∵数列{bn}是首项为1,公比为c的等比数列,

∴bn=cn-1.---------(11分)

∵A2n=a1b1+a2b2+…+a2nb2n,B2n=a1b1-a2b2+…-a2nb2n

∴A2n+B2n=2(a1b1+a3b3+…+a2n-1b2n-1),①

A2n-B2n=2(a2b2+a4b4+…+a2nb2n),②

①式两边乘以c得 c(A2n+B2n)=2(a1b2+a3b4+…+a2n-1b2n)③

由②③得(1-c)A2n-(1+c)B2n=A2n-B2n-c(A2n+B2n

=2[(a2-a1)b2+(a4-a3)b4+…+(a2n-a2n-1)b2n]

=2(c+c3+…+c2n-1

=

 
2c(1-c2n)
1-c2

将c=2代入上式,得A2n+3B2n=

4
3
(1-4n).-----------------------------------------(14分)

另证:先用错位相减法求An,Bn,再验证A2n+3B2n=

4
3
(1-4n).

∵数列{bn}是首项为1,公比为c=2的等比数列,∴bn=2n-1.--------------(11分)

又是an=n(n∈N*),所以A2n=1×20+2×21+…+2n×22n-1

B2n=1×20-2×21+…-2n×22n-1

将①乘以2得:

2A2n=1×21+2×22+…+2n×22n

①-③得:-A2n=20+21+…+22n-1-2n×22n=

1(1-22n)
1-2
-2n×22n

整理得:A2n=4n(2n-1)+1-------------------------(12分)

将②乘以-2得:-2B2n=-1×21+2×22-…+2n×22n

②-④整理得:3B2n=20-21+…+22n-1-2n×22n=

1(1-22n)
1-(-2)
-2n×22n=
1-4n
3
-2n×4n,(13分)

∴A2n+3B2n=

4
3
(1-4n)-----------------------------------------(14分)

填空题
问答题 简答题