设数列{an} 的前n项和为Sn ,已知S1=1,
(1)求c的值; (2)求数列{an} 的通项公式; (3)若数列{bn} 是首项为1,公比为c的等比数列,记An=a1b1+a2b2+…+anbn,Bn=a1b1-a2b2+…+(-1)n-1anbn,n∈N*.证明:A2n+3B2n=
|
(1)∵S1=1,
=Sn+1 Sn
,n+c n
∴an+1=Sn+1-Sn=
Sn,-------------------------(2分)c n
∴a1=S1=1,a2=cS1=c,a3=
S2=c 2
(1+c).c 2
∵a1,a2,a3成等差数列,
∴2a2=a1+a3,
即2c=1+
,c(1+c) 2
∴c2-3c+2=0.---------------------------------------------------(5分)
解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)
(2)∵)∵S1=1,
=Sn+1 Sn
,n+2 n
∴Sn=S1×
×…×S2 S1
=1×Sn Sn-1
×3 1
×…×4 2
=n+1 n-1
(n≥2),-------------------(8分)n(1+n) 2
∴an=Sn-Sn-1=
-n(1+n) 2
=n(n≥2),------------------------------------------(9分)n(n-1) 2
又a1=1,∴数列{an}的通项公式是an=n(n∈N*).-----------------------------------(10分)
(3)证明:∵数列{bn}是首项为1,公比为c的等比数列,
∴bn=cn-1.---------(11分)
∵A2n=a1b1+a2b2+…+a2nb2n,B2n=a1b1-a2b2+…-a2nb2n,
∴A2n+B2n=2(a1b1+a3b3+…+a2n-1b2n-1),①
A2n-B2n=2(a2b2+a4b4+…+a2nb2n),②
①式两边乘以c得 c(A2n+B2n)=2(a1b2+a3b4+…+a2n-1b2n)③
由②③得(1-c)A2n-(1+c)B2n=A2n-B2n-c(A2n+B2n)
=2[(a2-a1)b2+(a4-a3)b4+…+(a2n-a2n-1)b2n]
=2(c+c3+…+c2n-1)
=
, 2c(1-c2n) 1-c2
将c=2代入上式,得A2n+3B2n=
(1-4n).-----------------------------------------(14分)4 3
另证:先用错位相减法求An,Bn,再验证A2n+3B2n=
(1-4n).4 3
∵数列{bn}是首项为1,公比为c=2的等比数列,∴bn=2n-1.--------------(11分)
又是an=n(n∈N*),所以A2n=1×20+2×21+…+2n×22n-1①
B2n=1×20-2×21+…-2n×22n-1②
将①乘以2得:
2A2n=1×21+2×22+…+2n×22n③
①-③得:-A2n=20+21+…+22n-1-2n×22n=
-2n×22n,1(1-22n) 1-2
整理得:A2n=4n(2n-1)+1-------------------------(12分)
将②乘以-2得:-2B2n=-1×21+2×22-…+2n×22n④
②-④整理得:3B2n=20-21+…+22n-1-2n×22n=
-2n×22n=1(1-22n) 1-(-2)
-2n×4n,(13分)1-4n 3
∴A2n+3B2n=
(1-4n)-----------------------------------------(14分)4 3