问题
解答题
已知各项均为正数的数列{an}的前n项和sn满足s1>1,且6sn=(an+1)(an+2)(n为正整数). (1)求{an}的通项公式; (2)设数列{bn}满足bn=
(3)设Cn=
|
答案
(1)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.…..(2分)
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,
两式相减得:6an=an2-an-12+3an-3an-1
即(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,an=3n-1.….(6分)
(2)bn=
,Tn=b1+b2+…+bn.…..(7分)3n-1,n为偶数 23n-1,n为奇数
当n为偶数时,
Tn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=
+4(1-8
)n 2 1-8
=
(5+3n-1)n 2 2
(84 7
-1)+n 2
,….(9分)n(3n+4) 4
当n为奇数时,Tn=(b1+b3+…+bn)+(b2+b4+…+bn-1)
=
+4(1-8
)n+1 2 1-8
=
(5+3n-4)n-1 2 2
(84 7
-1)+n+1 2
.…(11分)∴Tn=(n-1)(3n+1) 4
…..(12分)
(84 7
-1)+n 2
,n为偶数n(3n-4) 4
(84 7
-1)+n+1 2
,n为奇数(n-1)(3n+1) 4
(3)Cn=
,…..(14分)
=2an+1 an
,n为偶数23n+2 3n-1
=an+1 2an
,n为奇数3n+2 23n-1
当n为奇数时,Cn+2-Cn=
-3n+8 23n+5
=3n+2 23n-1
[3n+8-64(3n+2)]<0,…(15分)1 23n+5
∴Cn+2<Cn,
∴{Cn}递减,…..(16分)
Cn≤C1=
<2008,…..(17分)5 4
因此不存在满足条件的正整数N.…..(18分)