问题 解答题
正项数列{an}的前n项和Sn满足:Sn2-(n2+n-1)Sn-(n2+n)=0
(1)求数列{an}的通项公式an
(2)令b n=
n+1
(n+2)2an2
,数列{bn}的前n项和为Tn.证明:对于任意n∈N*,都有T n
5
64
答案

(I)由Sn2-(n2+n-1)Sn-(n2+n)=0

可得,[sn-(n2+n)](sn+1)=0

∵正项数列{an},sn>0

∴sn=n2+n

于是a1=s1=2

n≥2时,an=sn-sn-1=n2+n-(n-1)2-(n-1)=2n,而n=1时也适合

∴an=2n

(II)证明:由b n=

n+1
(n+2)2an2
=
n+1
(n+2)2•4n2
=
1
16
[
1
n2
-
1
(n+2)2
]

Tn=

1
16
[1-
1
32
+
1
22
-
1
42
+…+
1
(n-1)2
-
1
(n+1)2
+
1
n2
-
1
(n+2)2
]

=

1
16
[1+
1
4
-
1
(n+1)2
-
1
(n+2)2
]

1
16
(1+
1
4
)=
5
64

选择题
单项选择题