问题
解答题
正项数列{an}的前n项和Sn满足:Sn2-(n2+n-1)Sn-(n2+n)=0 (1)求数列{an}的通项公式an; (2)令b n=
|
答案
(I)由Sn2-(n2+n-1)Sn-(n2+n)=0
可得,[sn-(n2+n)](sn+1)=0
∵正项数列{an},sn>0
∴sn=n2+n
于是a1=s1=2
n≥2时,an=sn-sn-1=n2+n-(n-1)2-(n-1)=2n,而n=1时也适合
∴an=2n
(II)证明:由b n=
=n+1 (n+2)2an2
=n+1 (n+2)2•4n2
[1 16
-1 n2
]1 (n+2)2
∴Tn=
[1-1 16
+1 32
-1 22
+…+1 42
-1 (n-1)2
+1 (n+1)2
-1 n2
]1 (n+2)2
=
[1+1 16
-1 4
-1 (n+1)2
]1 (n+2)2
<
(1+1 16
)=1 4 5 64