问题
解答题
已知公差不为零的等差数列{an}中,a1=1,a1,a3,a7成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{an}的前n项和为Sn,求数列{
|
答案
(Ⅰ)设等差数列{an}的公差为d,由a1,a3,a7成等比数列,
得a32=a1•a7,
即(1+2d)2=1+6d
得d=
或d=0(舍去). 1 2
故d=
.1 2
所以an=n+1 2
(Ⅱ)又Sn=
=n(a1+an) 2
n2+1 4
n,3 4
则
=sn n
n+1 4 3 4
又
-Sn+1 n+1
=Sn n
(n+1)+1 4
-(3 4
n+1 4
)=3 4 1 4
{
}是首项为1,公差为Sn n
的等差数列.1 4
所以Tn=n×1+
×n(n-1) 2
=1 4
n2+1 8
n.7 8