问题
解答题
已知等差数列{an}的前n项和Sn满足S3=0,S5=-5. (Ⅰ)求{an}的通项公式; (Ⅱ)求数列{
|
答案
(Ⅰ)设数列{an}的首项为a1,公差为d,则Sn=na1+
.n(n-1)d 2
由已知可得
,即3a1+3d=0 5a1+
d=05(5-1) 2
,解得a1=1,d=-1,3a1+3d=0 5a1+10d=0
故{an}的通项公式为an=a1+(n-1)d=1+(n-1)•(-1)=2-n;
(Ⅱ)由(Ⅰ)知
=1 a2n-1a2n+1
=1 (3-2n)(1-2n)
(1 2
-1 2n-3
).1 2n-1
从而数列{
}的前n项和1 a2n-1a2n+1
S=
[(1 2
-1 -1
)+(1 1
-1 1
)+…+(1 3
-1 2n-3
)]1 2n-1
=
(-1-1 2
)=1 2n-1
.n 1-2n