设数列{an}与{bn}满足:对任意n∈N*,都有ban-2n=(b-1)Sn,bn=an-n•2n-1.其中Sn为数列{an}的前n项和.
(1)当b=2时,求数列{an}与{bn}的通项公式;
(2)当b≠2时,求数列{an}的前n项和Sn.
由题意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1
两式相减得b(an+1-an)-2n=(b-1)an+1
即an+1=ban+2n①
(1)当b=2时,由①知an+1=2an+2n
于是an+1-(n+1)•2n=2an+2n-(n+1)•2n=2(an-n•2n-1)
又a1-1•2n-1=1≠0,所以{an-n•2n-1}是首项为1,公比为2的等比数列.
故知,bn=2n-1,
再由bn=an-n•2n-1,得an=(n+1)2n-1.
(2)当b≠2时,由①得an+1-
•2n+1=ban+2n-1 2-b
•2n+1=b(an-1 2-b
•2n)1 2-b
若b=0,Sn=2n
若b=1,an=2n,Sn=2n+1-2
若b≠0、1,数列{an-
•2n}是以1 2-b
为首项,以b为公比的等比数列,2(1-b) 2-b
故an-
•2n=1 2-b
•bn-1,an=2(1-b) 2-b
[2n+(2-2b)bn-1]Sn=1 2-b
(2+22+23+…+2n)+1 2-b
(1+b1+b2+…+bn-1),2(1-b) 2-b
Sn=2(2n-bn) 2-b
b=1时,Sn=2n+1-2符合上式
所以,当b≠0时,Sn=2(2n-bn) 2-b
当b=0时,Sn=2n
另
当n=1时,S1=a1=2
当n≥2时,∵ban-2n=(b-1)Sn∴b(Sn-Sn-1)-2n=(b-1)Sn
∴Sn=bSn-1+2n
若b=0,Sn=2n
若b≠0,两边同除以2n得
=Sn 2n
•b 2
+1Sn-1 2n-1
令
+m=Sn 2n
•b 2
+1+m,即Sn-1 2n-1
+m=Sn 2n
•(b 2
+Sn-1 2n-1
)2+2m b
由m=
得m=2+2m b
∴{2 b-2
+Sn 2n
}是以2 b-2
为首项,b b-2
为公比的等比数列b 2
∴
+Sn 2n
=2 b-2
•(b b-2
)n-1,b 2
所以,当b≠0时,Sn=2(2n-bn) 2-b