问题
解答题
已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1). (1)求数列{an}的通项公式an; (2)设Tn为数列{
|
答案
(1)nan+1-(n-1)an=an+2n,an+1-an=2(n≥2)a1=2,a2=s1+2,
∴a2-a1=2,所以{an}等差an=2n
(2)
=an 2n
=2n 2n
,Tn=1+n 2n-1
+2 2
+…+3 22 n 2n-1
Tn=1 2
+1 2
+…+2 22
+n-1 2n-1 n 2n
Tn=2-(n+2)1 2
,Tn=4-1 2n n+2 2n-1