问题 解答题
已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足2
Sn
=an+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,求数列{bn}的前n项和Bn
答案

(Ⅰ)由2

Sn
=an+1,n=1代入得a1=1,

两边平方得4Sn=(an+1)2(1),

(1)式中n用n-1代入得4Sn-1=(an-1+1)2

 &(n≥2)
(2),

(1)-(2),得4an=(an+1)2-(an-1+1)2,0=(an-1)2-(an-1+1)2,(3分)

[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,

由正数数列{an},得an-an-1=2,

所以数列{an}是以1为首项,2为公差的等差数列,有an=2n-1.(7分)

(Ⅱ)bn=

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
),

裂项相消得Bn=

n
2n+1
.(14分)

选择题
单项选择题