问题
解答题
已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足2
(Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)由2
=an+1,n=1代入得a1=1,Sn
两边平方得4Sn=(an+1)2(1),
(1)式中n用n-1代入得4Sn-1=(an-1+1)2
(2), &(n≥2)
(1)-(2),得4an=(an+1)2-(an-1+1)2,0=(an-1)2-(an-1+1)2,(3分)
[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,
由正数数列{an},得an-an-1=2,
所以数列{an}是以1为首项,2为公差的等差数列,有an=2n-1.(7分)
(Ⅱ)bn=
=1 an•an+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),1 2n+1
裂项相消得Bn=
.(14分)n 2n+1