问题
解答题
已知等差数列an是递增数列,且满足a5=3,S6=12. (1)求数列an的通项公式; (2)令bn=
|
答案
(1)根据题意:
,解得a1+4d=3 6a1+15d=12
,(3分)a1= 1 3 d= 2 3
故等差数列{an}的通项公式为an=a1+(n-1)•d=
(6分)2n-1 3
(2)bn=
=1 anan+1
=1
• 2n-1 3 2n+1 3
=9 (2n-1)(2n+1)
(9 2
-1 2n-1
),1 2n+1
Sn=
[(1-9 2
)+(1 3
-1 3
)+(1 5
-1 5
)+…+(1 7
-1 2n-1
)]=1 2n+1
[(1-9 2
)]=1 2n+1
(1-9 2
)<1 2n+1
(12分)9 2
∵t是整数,∴t的最小值是5.(15分)