问题
解答题
已知抛物线 y=x2﹣4与直线y=x+2.
(1)求两曲线的交点;
(2)求抛物线在交点处的切线方程.
答案
解:(1)由,
求得交点A(﹣2,0),B(3,5)
(2)因为y'=2x,则y'|x=﹣2=﹣4,y'|x=3=6,
所以抛物线在A,B处的切线方程分别为
y=﹣4(x+2)与 y﹣5=6(x﹣3)4x+y+8=0 与6x﹣y﹣13=0
已知抛物线 y=x2﹣4与直线y=x+2.
(1)求两曲线的交点;
(2)求抛物线在交点处的切线方程.
解:(1)由,
求得交点A(﹣2,0),B(3,5)
(2)因为y'=2x,则y'|x=﹣2=﹣4,y'|x=3=6,
所以抛物线在A,B处的切线方程分别为
y=﹣4(x+2)与 y﹣5=6(x﹣3)4x+y+8=0 与6x﹣y﹣13=0