问题 解答题
设Sn是数列{an}的前n项和,且点(n,Sn)在函数y=x2+2x上,
(1)求数列{an}的通项公式;
(2)已知bn=2n-1,Tn=
1
a1b1
+
1
a2b2
+…+
1
anbn
,求Tn
答案

(1)由题意可得,Sn=n2+2n

当n=1时,a1=S1=3

当n≥2时,an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)=2n+1

而a1=3适合上式

∴an=2n+1

(2)∵bn=2n-1

1
anbn
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=

1
a1b1
+
1
a2b2
+…+
1
anbn

=

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=

1
2
(1-
1
2n+1
)=
n
2n+1

判断题
问答题