问题
解答题
设Sn是数列{an}的前n项和,且点(n,Sn)在函数y=x2+2x上, (1)求数列{an}的通项公式; (2)已知bn=2n-1,Tn=
|
答案
(1)由题意可得,Sn=n2+2n
当n=1时,a1=S1=3
当n≥2时,an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)=2n+1
而a1=3适合上式
∴an=2n+1
(2)∵bn=2n-1
∴
=1 anbn
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=
+1 a1.b1
+…+1 a2.b2 1 an.bn
=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)1 2n+1
=
(1-1 2
)=1 2n+1 n 2n+1