问题 解答题
数列{an}是等差数列,a2=3,前四项和S4=16.
(1)求数列{an}的通项公式;
(2)记Tn=
1
a 1a2
+
1
a2a3
+…+
1
anan+1
,计算T2011
答案

(1)由a2=3,S4=16,根据题意得:

a1+d=3①
4a1+6d=16②
,解得:
a1=1
d=2

则an=1+2(n-1)=2n-1;

(2)∵

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),

∴T2011=

1
a1a2
+
1
a2a3
+…+
1
a2011a2012

=

1
1×3
+
1
3×5
+…+
1
2009×2011
+
1
2011×2013
+…+
1
4021×4023

=

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2011
-
1
2013
+…+
1
4021
-
1
4023

=

1
2
(1-
1
4023

=

2011
4023

选择题
选择题