问题
解答题
已知离心率为e=2的双曲线C:
(1)求双曲线C的方程 (2)过点M(5,0)的直线l与双曲线C交于A、B两点,交y轴于N点,当
|
答案
(1)∵e=2∴
=2(1分)c a
右焦点F(c,0)到渐近线bx-ay=0的距离d=
=b=|cb| a2+b2
(3分)3
从而得a=1∴双曲线方程是x2-
=1(5分)y2 3
(2)设A(x1,y1),B(x2,y2)
由
得(3-k2)x2+10k2x-25k2-3=0△=100k4+4(3-k2)(25k2+3)>0(k≠±x2-
=1y2 3 y=k(x-5)
)①x1+x2=-3
,x1x2=-10k2 3-k2 25k2+3 3-k2
由
=λNM
得,同理AM
=1-1 μ x2 5
+1 λ
=2-1 μ
=x1+x2 5
,6 3-k2
•1 λ
=1-1 μ
+x1+x2 5
=x1x2 25
(72 25(3-k2)
)2+(1 λ
)2=(1 μ
+1 λ
)2-1 μ
=2 λμ
-36 (3-k2)2
=144 25(3-k2) 49 25
解得k=±3满足①∴l方程为3x-y-15=0或3x+y-15=0