问题
解答题
数列{an}首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负的:
(1)求此等差数列的公差d;
(2)设前n项和为Sn,求Sn的最大值;
(3)当Sn是正数时,求n的最大值.
答案
(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负
∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,
解得:-
<d<-23 5
,23 6
又d∈Z,∴d=-4
(2)∵d<0,∴{an}是递减数列,
∵a6>0,a7<0
∴当n=6时,Sn取得最大值,S6=6×23+
×(-4)=786×5 2
(3)Sn=23n+
×(-4)>0,整理得:n(50-4n)>0n(n-1) 2
∴0<n<
,又n∈N*,25 2
∴n的最大值为12.