问题
解答题
已知等差数列{an}的前n项和为An,a1+a5=6,A9=63. (1)求数列{an}的通项公式an及前n项和An; (2)数列{bn}的前n项和Bn满足:6Bn=8bn-1,(n∈N*),数列{an•bn}的前n项和为Sn,求证:
|
答案
(1)∵A9=63,∴9a5=63,∴a5=7
∵a1+a5=6,∴a1=-1,∴d=
=2a5-a1 4
∴an=2n-3,An=
=n2-2nn(-1+2n-3) 2
(2)证明:∵6Bn=8bn-1,6Bn-1=8bn-1-1,(n≥2,n∈N*)
∴两式相减可得:6bn=8bn-8bn-1
∴
=4(n≥2)bn bn-1
∵6b2=8b1-1
∴b1=1 2
∴bn=22n-3
∴anbn=(2n-3)•22n-3
∴Sn=-1•2-1+1•21+…+(2n-3)•22n-3
∴4Sn=-1•21+1•23+…+(2n-3)•22n-1
两式相减可得-3Sn=(11-6n)22n-11 6
∴
=Sn 4n
+6n-11 18 11 18•4n
∴
-Sn+1 4n+1
=-Sn 4n
>011 6×4n+1
∴
随着n的增大而增大Sn 4n
∴
≥Sn 4n
=-S1 4 1 8