问题 解答题

在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1。

(1)过C1的左顶点引C1的一条渐进线的平行线,求该直线与另一条渐进线及x轴围成的三角形的面积;

(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;

(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值。

答案

解:(1)双曲线C1左顶点A(-),渐近线方程为:y=±x

过A与渐近线y=x平行的直线方程为y=(x+),即y=,所

,解得

所以所求三角形的面积为S=

(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,

,得x2-2bx-b2-1=0,

设P(x1,y1),Q(x2,y2),则

又y1y2=(x1+b)(x2+b)

所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(-1-b2)+2b2+b2=b2-2=0

故PO⊥OQ。

(3)当直线ON垂直x轴时,|ON|=1,|OM|=

则O到直线MN的距离为

当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),

则直线OM的方程为y=

所以

同理

设O到直线OM的距离为d,

因为(|OM|2+|ON|2)d2=|OM|2|ON|2

所以==3,即d=

综上,O到直线MN的距离是定值。

单项选择题
多项选择题 案例分析题