问题 解答题
已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明
1
3
1
S1
+
1
S2
+…+
1
Sn
3
4
答案

(Ⅰ)设等比数列的公比为q,则

∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4

(a1+3d)2=a1(a1+12d)

∵a1=3,∴d2-2d=0

∴d=2或d=0(舍去)

∴an=3+2(n-1)=2n+1

q=

b3
b2
=
a4
a1
=3,b1=
b2
q
=1

∴bn=3n-1

(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n

1
Sn
=
1
n(n+2)
=
1
2
1
n
-
1
n+2

1
S1
+
1
S2
+…+
1
Sn
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=

3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4

1
n+1
+
1
n+2
1
2
+
1
3
=
5
6

3
4
-
1
2
(
1
n+1
+
1
n+2
)≥
1
3

1
3
1
S1
+
1
S2
+…+
1
Sn
3
4

单项选择题
单项选择题