问题
解答题
已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4. (Ⅰ)求数列{an}与{bn}的通项公式; (Ⅱ)证明
|
答案
(Ⅰ)设等比数列的公比为q,则
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
∴(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
∵q=
=b3 b2
=3,b1=a4 a1
=1b2 q
∴bn=3n-1;
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
∴
=1 Sn
=1 n(n+2)
(1 2
-1 n
)1 n+2
∴
+1 S1
+…+1 S2
=1 Sn
[(1-1 2
)+(1 3
-1 2
)+…+(1 4
-1 n
)]=1 n+2
(1+1 2
-1 2
-1 n+1
)1 n+2
=
-3 4
(1 2
+1 n+1
)<1 n+2 3 4
∵
+1 n+1
≤1 n+2
+1 2
=1 3 5 6
∴
-3 4
(1 2
+1 n+1
)≥1 n+2 1 3
∴
≤1 3
+1 S1
+…+1 S2
<1 Sn 3 4