问题
解答题
设函数f(x)=
(1)求实数b; (2)求数列{an}的通项公式; (3)若Cn=
|
答案
(1)∵cosα∈[-1,1],sinβ∈[-1,1],2-sinβ∈[1,3]
不论α、β为何实数恒有 f(cosα)≤0,f(2-sinβ)≥0
即对x∈[-1,1]有f(x)≤0对x∈[1,3]有f(x)≥0
∴x=1时f(1)=0
(2)∵Sn=f(an)=1 4
+a 2n
an-1 2
⇒Sn-1=3 4 1 4
+a 2n-1
an-1-1 2 3 4
∴n≥2时Sn-Sn-1=an=
(1 4
-a 2n
)+a 2n-1
(an-an+1)1 2
∴(an+an-1)(an-an-1-2)=0∵an>0∴an-an-1=2
∴{an}是首项为a,公差为2的等数列
由a1=S1代入方程a1=1 4
+a 21
a1-1 2
⇒3 4
-2a1-3=0a 21
∴a1=3∴an=3+2(n-1)=2n+1
(3)∵Cn=
=1 (1+2n+1)2
<1 (2n+2)2
=1 (2n+2)2-1
(1 2
-1 2n+1
)1 2n+3
∴Tn=C1+C2+…+Cn<
[1 2
-1 3
+1 5
-1 5
+…+1 7
-1 2n+1
]=1 2n+3
(1 2
-1 3
)=1 2n+3
-1 6
<1 2(2n+3) 1 6