问题 填空题
记数列{an}的前n项和为Sn,若{
Sn
an
}
是公差为d的等差数列,则{an}为等差数列时d=______.
答案

{

Sn
an
}是
S1
a1
=1为首项,d为公差的等差数列,

Sn
an
=1+(n-1)d,

∴Sn=an+(n-1)dan,①

Sn-1=an-1+(n-2)dan-1.②

①-②得:

an=an+(n-1)dan-an-1-(n-2)dan-1

整理可得

(n-1)dan-(n-1)dan-1=(1-d)an-1

假设d=0,那么

Sn
an
=1,

S1=a1,S2=a1+a2=a2

∴a1=0,∵a1为除数,不能为0,∴d≠0.

在此假设an的公差为d′,

所以有d′=

(1-d)an-1
(n-1)d

当d=1时,d′=0,an是以a1为首项,0为公差的等差数列.

当d≠1时,an-1=(n-1)

d•d′
1-d

an-an-1=

d•d′
1-d
=d′,

∴d=

1
2

此时,an是以d′为首项,d′为公差的等差数列.

综上所述,d=1,或d=

1
2

故答案为:1或

1
2

选择题
名词解释