问题
填空题
记数列{an}的前n项和为Sn,若{
|
答案
∵{
}是Sn an
=1为首项,d为公差的等差数列,S1 a1
∴
=1+(n-1)d,Sn an
∴Sn=an+(n-1)dan,①
Sn-1=an-1+(n-2)dan-1.②
①-②得:
an=an+(n-1)dan-an-1-(n-2)dan-1,
整理可得
(n-1)dan-(n-1)dan-1=(1-d)an-1,
假设d=0,那么
=1,Sn an
S1=a1,S2=a1+a2=a2,
∴a1=0,∵a1为除数,不能为0,∴d≠0.
在此假设an的公差为d′,
所以有d′=
,(1-d)an-1 (n-1)d
当d=1时,d′=0,an是以a1为首项,0为公差的等差数列.
当d≠1时,an-1=(n-1)
,d•d′ 1-d
an-an-1=
=d′,d•d′ 1-d
∴d=
,1 2
此时,an是以d′为首项,d′为公差的等差数列.
综上所述,d=1,或d=
.1 2
故答案为:1或
.1 2