问题
解答题
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0),a1=b1=1,S5=45,T3=a3-b2. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)求
|
答案
(Ⅰ)设{an}的公差为d,则S5=5+10d=45.
解得d=4,所以an=4n-3. …(4分)
由T3=a3-b2,得1+q+q2=9-q,又q>0,从而解得q=2,所以bn=2n-1. …(8分)
(Ⅱ)
=q anan+1
=2 anan+1
=d 2anan+1
(1 2
-1 an
). …(10分)1 an+1
所以M=
+q a1a2
+…+q a2a3
=q anan+1
(1 2
-1 a1
+1 a2
-1 a2
+…+1 a3
-1 an
)1 an+1
=
(1 2
-1 a1
)=1 an+1
(1-1 2
)=1 4n+1
. …(14分)2n 4n+1