问题 解答题
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0),a1=b1=1,S5=45,T3=a3-b2
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求
q
a1a2
+
q
a2a3
+…+
q
anan+1
答案

(Ⅰ)设{an}的公差为d,则S5=5+10d=45.             

解得d=4,所以an=4n-3.                 …(4分)

由T3=a3-b2,得1+q+q2=9-q,又q>0,从而解得q=2,所以bn=2n-1.       …(8分)

(Ⅱ)

q
anan+1
=
2
anan+1
=
d
2anan+1
=
1
2
(
1
an
-
1
an+1
).  …(10分)

所以M=

q
a1a2
+
q
a2a3
+…+
q
anan+1
=
1
2
(
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
an
-
1
an+1
)

=

1
2
(
1
a1
-
1
an+1
)=
1
2
(1-
1
4n+1
)
=
2n
4n+1
.                           …(14分)

单项选择题
单项选择题