阅读下列函数说明和C代码,将应填入 (n) 处的字句写上。
[说明]
若要在N个城市之间建立通信网络,只需要N-1条线路即可。如何以最低的经济代价建设这个网络,是一个网的最小生成树的问题。现要在8个城市间建立通信网络,其问拓扑结构如图5-1所示,边表示城市间通信线路,边上标示的是建立该线路的代价。
[图5-1]
[*]
无向图用邻接矩阵存储,元素的值为对应的权值。考虑到邻接矩阵是对称的且对角线上元素均为0,故压缩存储,只存储上三角元素(不包括对角线)。
现用Prim算法生成网络的最小生成树。由网络G=(V,E)构造最小生成树T=(U,TE)的Prim算法的基本思想是:首先从集合V中任取一顶点放入集合U中,然后把所有一个顶点在集合U里、另一个顶点在集合V-U里的边中,找出权值最小的边(u,v),将边加入TE,并将顶点v加入集合U,重复上述操作直到U=V为止。
函数中使用的预定义符号如下:
#define MAX 32768 /*无穷大权,表示顶点间不连通*/
#define MAXVEX 30 /*图中顶点数目的最大值*/
typedef struct
int startVex,stopVex; /*边的起点和终点*/
float weight; /*边的权*/
Edge;
typedef struct
char vexs[MAXVEX]; /*顶点信息*/
float arcs[MAXVEX*(MAXVEX-1)/2]; /*邻接矩阵信息,压缩存储*/
int n; /*图的顶点个数*/
Graph;
[函数]
void PrimMST(Graph*pGraph, Edge mst[])
int i,j,k,min,vx,vy;
float weight,minWeight;
Edge edge;
for(i=0; i<pGraph->n-1;i++)
mst[i].StartVex=0;
mst[i].StopVex=i+1;
mst[i].weight=pGraph->arcs[i];
for(i=0;i<(1);i++)/*共n-1条边*/
minWeight=(float)MAX;
min=i;
/*从所有边(vx,vy)中选出最短的边*/
for(j=i; j<pGraph->n-1; j++)
if(mst[j].weight<minWeight)
minWeight=(2);
min=j;
/*mst[minl是最短的边(vx,vy),将mst[min]加入最小生成树*/
edge=mst[min];
mst[min]=mst[i];
mst[i]=edge;
vx= (3) ;/*vx为刚加入最小生成树的顶点下标*/
/*调整mst[i+1]到mst[n-1]*/
for(j=i+1;j<pGraph->n-1;j++)
vy=mst[j].StopVex;
if( (4) )/*计算(vx,vy)对应的边在压缩矩阵中的下标*/
k=pGraph->n*vy-vy*(vy+1)/2+vx-vy-1;
else
k=pGraph->n*vx-vx*(vx+1)/2+vy-vx-1;
weight= (5) ;
if(weight<mst[j].weight)
mst[j].weight=weight;
mst[j].StartVex=vx;
参考答案:pGraph->arcs[k]
解析:由注释“n-1条边”可得,(1)处应为pGraph->n-1。
空(2)有关程序段是选出权值最小的边,minWeight表示的是最小权值,因此空(2)应填mst[j].weight。
“vx为刚加入最小生成树的顶点下标”,因此空(3)应填mst[i].StopVex。
邻接矩阵是压缩存储的,只存储上三角阵,因此下标需要进行转换。比较if及else块,可发现两算式区别在于vx、vy互换,由邻接矩阵的对称性可得空(4)处应填vy<vx。
空(5)相关程序段是进行调整,应填pGraph->arcs[k]。