问题
解答题
已知正项等差数列{an}的前n项和为Sn,且满足a1+a5=
(Ⅰ)求数列{an}的通项公式an; (Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列{
|
答案
(Ⅰ)∵{an}是等差数列且a1+a5=
a32,1 3
∴2a3=
a32,1 3
又∵an>0∴a3=6.…(2分)
∵S7=
=7a4=56∴a4=8,…(4分)7(a1+a7) 2
∴d=a4-a3=2,
∴an=a3+(n-3)d=2n. …(6分)
(Ⅱ)∵bn+1-bn=an+1且an=2n,
∴bn+1-bn=2(n+1)
当n≥2时,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n+2(n-1)+…+2×2+2=n(n+1),…(8分)
当n=1时,b1=2满足上式,bn=n(n+1)
∴
=1 bn
=1 n(n+1)
-1 n
…(10分)1 n+1
∴Tn=
+1 b1
+…+1 b2
+1 bn-1
=(1-1 bn
)+(1 2
-1 2
)+…+(1 3
-1 n-1
)+(1 n
-1 n
)=1-1 n+1
=1 n+1
. …(12分)n n+1