问题 解答题
已知正项等差数列{an}的前n项和为Sn,且满足a1+a5=
1
3
a32
,S7=56.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列{
1
bn
}
的前n项和Tn
答案

(Ⅰ)∵{an}是等差数列且a1+a5=

1
3
a32

2a3=

1
3
a32

又∵an>0∴a3=6.…(2分)

S7=

7(a1+a7)
2
=7a4=56∴a4=8,…(4分)

∴d=a4-a3=2,

∴an=a3+(n-3)d=2n.   …(6分)

(Ⅱ)∵bn+1-bn=an+1且an=2n,

∴bn+1-bn=2(n+1)

当n≥2时,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1

=2n+2(n-1)+…+2×2+2=n(n+1),…(8分)

当n=1时,b1=2满足上式,bn=n(n+1)

1
bn
=
1
n(n+1)
=
1
n
-
1
n+1
…(10分)

Tn=

1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
.        …(12分)

选择题
单项选择题