问题
解答题
双曲线16x2-9y2=144的左、右两焦点分别为F1、F2,点P在双曲线上,且|PF1|•|PF2|=64,求△PF1F2的面积.
答案
双曲线方程16x2-9y2=144化简为
-x2 9
=1y2 16
即a2=9,b2=16
∴c2=25,解得a=3,c=5,可得F1(-5,0),F2(5,0)…(3分)
设|PF1|=m,|PF2|=n,
由双曲线的定义知|m-n|=2a=6,又已知m•n=64,…(5分)
在△PF1F2中,由余弦定理知
cos∠F1PF2=
=|PF1|2+|PF2|2-|F1F2|2 2|PF1|•|PF2| m2+n2-(2c)2 2m•n
=
=(m-n)2+2m•n-4c2 2m•n
=36+2×64-4×25 2×64 1 2
∴∠F1PF2=600
因此,△PF1F2的面积为
S△F1PF2=
|PF1|•|PF2|•sin∠F1PF2=1 2
m•n•sin600=161 2
…(12分)3