问题
解答题
已知公差不为零的等差数列{an}满足a3=5,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式an; (2)设Sn为数列{an}的前n项和,数列{bn}满足bn=2n•
|
答案
(1)∵a1,a2,a5成等比数列,a3=5
∴a22=a1a3
∴(5-d)2=(5-2d)(5+2d)
∵d≠0
∴d=2
∴an=a3+(n-3)d=5+2(n-3)=2n-1
(2)由(1)可得,Sn=
×n=n21+2n-1 2
∴bn=2n•
=n•2nSn
∴Tn=1•2+2•22+3•23+…+n•2n
∴2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得,-Tn=2+22+23+…+2n-n•2n+1
=
-n•2n+1=2n+1-2-n•2n+12(1-2n) 1-2
∴Tn=(n-2)•2n+1+2