问题
解答题
已知正数列{an}的前n项和为Sn,且有Sn=
(1)求数列{an}、{bn}的通项公式; (2)若c=anbn,求:数列{cn}的前n项和Tn; (3)求证:
|
答案
(1)由Sn=
(an+1)2,1 4
当n=1时,a1=
(a1+1)2,∴a1=1,1 4
当n≥2时,Sn-1=
(an-1+1)2,1 4
∴an=Sn-Sn-1=
(1 4
-a 2n
+2an-2an-1),a 2n-1
即(an+an+1)(an-an-1-2)=0,∵an>0,
∴数列{an}是a1=1,d=2的等差数列
∴an=a1+(n-1)d=2n-1.
∵数列{bn}是首项为1,公比为
的等比数列.1 2
∴bn=b1qn-1=1×(
)n-1=(1 2
)n-1.1 2
(2)cn=anbn=
,Tn=c1+c2+…+cn2n-1 2n-1
Tn=1+
+3 2
+…+5 22
,①2n-1 2n-1
Tn=1 2
+1 2
+…+3 22
+2n-3 2n-1
,②2n-1 2n
①-②得
Tn=1+1+1 2
+1 2
+…+1 22
-1 2n-2
=2n-1 2n
-1-2(1-(
)n)1 2 1- 1 2
=3-2n-1 2n
-1 2n-2
,2n-1 2n
∴Tn=6-2n+3 2n-1
(3)∵Sn=
(an+1)2=1 4
(2n-1+1)2=n2,1 4
当n≥2,
=1 Sn
<1 n2
=1 n2-1
(1 2
-1 n-1
),1 n+1
∴
+1 S1
+…+1 S2
<1+1 Sn
+1 22
[(1 2
-1 2
)+(1 4
-1 3
)+…+(1 5
-1 n-2
)+(1 n
-1 n-1
)]1 n+1
=1+
+1 4
(1 2
+1 2
-1 3
-1 n
)<1+1 n+1
+1 4
(1 2
+1 2
)=1+1 3
+1 4
+1 4
=1 6
.5 3