问题 解答题
已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列{bn}是首项为1,公比为
1
2
的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn
(3)求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3
答案

(1)由Sn=

1
4
(an+1)2

当n=1时,a1=

1
4
(a1+1)2,∴a1=1,

n≥2时,Sn-1=

1
4
(an-1+1)2

an=Sn-Sn-1=

1
4
(
a2n
-
a2n-1
+2an-2an-1),

即(an+an+1)(an-an-1-2)=0,∵an>0,

∴数列{an}是a1=1,d=2的等差数列

∴an=a1+(n-1)d=2n-1.

∵数列{bn}是首项为1,公比为

1
2
的等比数列.

bn=b1qn-1=1×(

1
2
)n-1=(
1
2
)n-1

(2)cn=anbn=

2n-1
2n-1
,Tn=c1+c2+…+cn

Tn=1+

3
2
+
5
22
+…+
2n-1
2n-1
,①

1
2
Tn=
1
2
+
3
22
+…+
2n-3
2n-1
+
2n-1
2n
,②

①-②得

1
2
Tn=1+1+
1
2
+
1
22
+…+
1
2n-2
-
2n-1
2n
=
2(1-(
1
2
)n)
1-
1
2
-1-
2n-1
2n
=3-
1
2n-2
-
2n-1
2n

Tn=6-

2n+3
2n-1

(3)∵Sn=

1
4
(an+1)2=
1
4
(2n-1+1)2=n2

当n≥2,

1
Sn
=
1
n2
1
n2-1
=
1
2
(
1
n-1
-
1
n+1
),

1
S1
+
1
S2
+…+
1
Sn
<1+
1
22
+
1
2
[(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-2
-
1
n
)+(
1
n-1
-
1
n+1
)]

=1+

1
4
+
1
2
(
1
2
+
1
3
-
1
n
-
1
n+1
)<1+
1
4
+
1
2
(
1
2
+
1
3
)
=1+
1
4
+
1
4
+
1
6
=
5
3

单项选择题
单项选择题