问题
填空题
过双曲线
|
答案
∵
=OE
(1 2
+OF
),OP
∴E为PF的中点,令右焦点为F′,则O为FF′的中点,
则PF′=2OE=a,
∵E为切点,
∴OE⊥PF
∴PF′⊥PF
∵PF-PF′=2a
∴PF=PF′+2a=3a
在Rt△PFF′中,PF2+PF′2=FF′2
即9a2+a2=4c2
⇒所以离心率e=
=c a 10 2
故答案为:
.10 2
过双曲线
|
∵
=OE
(1 2
+OF
),OP
∴E为PF的中点,令右焦点为F′,则O为FF′的中点,
则PF′=2OE=a,
∵E为切点,
∴OE⊥PF
∴PF′⊥PF
∵PF-PF′=2a
∴PF=PF′+2a=3a
在Rt△PFF′中,PF2+PF′2=FF′2
即9a2+a2=4c2
⇒所以离心率e=
=c a 10 2
故答案为:
.10 2